Isotop

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Als Isotope bezeichnet man Nuklide in ihrem Verhältnis zueinander, wenn ihre Atomkerne gleich viele Protonen (gleiche Ordnungszahl), aber verschieden viele Neutronen enthalten. Sie stellen dann ein und dasselbe Element dar, verhalten sich also chemisch weitgehend identisch, haben aber verschiedene Massenzahlen. Die Bezeichnung Isotop ist älter als der allgemeinere Begriff Nuklid und wird daher nach wie vor oft gleichbedeutend mit Nuklid benutzt.

Der Name (von griechisch ἴσος, ísos „gleich“ und τόπος, tópos „Ort, Stelle“) kommt daher, dass die Isotope eines Elements im Periodensystem am gleichen Ort stehen. Getrennt voneinander dargestellt werden sie in einer Nuklidkarte.

Der Begriff Isotop wurde von Frederick Soddy geprägt, der für seine Arbeiten und Erkenntnisse im Bereich der Isotope und Radionuklide 1921 den Nobelpreis für Chemie erhielt.

In der Regel besitzt jedes natürlich vorkommende Element ein oder wenige stabile Isotope, während seine übrigen Isotope radioaktiv (das heißt instabil) sind und früher oder später zerfallen. Es gibt jedoch auch Elemente, bei denen alle Isotope instabil sind.

Schreibweise für Isotope

Um ein bestimmtes Isotop eines Elementes zu kennzeichnen, wird die Massenzahl dem Elementsymbol links oben hinzugefügt. Die Kernladungszahl ist schon durch den Namen (das Elementsymbol) gegeben, kann aber zusätzlich links unten an das Elementsymbol geschrieben werden, sofern sie – z. B. bei Kernreaktionen – von Interesse ist, wie in

{}^{6}_{3}\mathrm{Li}+{}^{2}_{1}\mathrm{H}\rightarrow{}^{4}_{2}\mathrm{He}+{}^{4}_{2}\mathrm{He}

Im Fließtext wird oft einfach die Massenzahl an das Elementsymbol oder an den vollen Elementnamen mit Bindestrich angefügt, also z. B. U-235, Uran-235, C-14, Kohlenstoff-14, wie es auch der Sprechweise entspricht.

Tritt in der Bezeichnung noch ein m auf (z. B. 16m1N), so ist damit ein Kernisomer gemeint. Wenn hinter dem m eine Zahl steht, ist dies eine Nummerierung, falls mehrere Isomere existieren.

Chemische Reaktionen von Isotopen

In ihrem chemischen Verhalten unterscheiden sich Isotope eines Elements nicht in der Art der möglichen Reaktionen, sondern vor allem in ihrer Reaktionsgeschwindigkeit, weil diese schwach von der Masse abhängt.

Bei schweren Elementen ist der relative Massenunterschied allerdings sehr gering. Beispielsweise beträgt das Verhältnis der Atommassen von Uran-238 und Uran-235 1:1,013; in ihrem chemischen Verhalten ist kein merklicher Unterschied, zum Trennen müssen physikalische Methoden eingesetzt werden (siehe Urananreicherung). Bei den Lithiumisotopen Li-7 und Li-6 beträgt das Verhältnis 1:1,17; hier sind bereits physikalisch-chemische Trennmethoden möglich (siehe Lithium). Bei den drei Wasserstoffisotopen sind die Massenunterschiede sehr groß (1H:2H:3H wie 1:2:3), weshalb sie chemisch leicht unterschiedlich reagieren und sogar eigene Namen und Elementsymbole erhielten:

  • Das weitaus häufigste Wasserstoffisotop 1H wird auch als Protium oder leichter Wasserstoff bezeichnet.
  • Das Isotop 2H wird auch als Deuterium oder schwerer Wasserstoff bezeichnet. Elementsymbol: D.
  • Das Isotop 3H wird auch als Tritium oder überschwerer Wasserstoff bezeichnet. Elementsymbol: T.

Ein Beispiel für das unterschiedliche chemische Verhalten von H und D tritt bei der Elektrolyse von Wasser auf, bei der bevorzugt Wasser mit dem normalen 1H reagiert und in Wasserstoff und Sauerstoff zerlegt wird, während sich Wassermoleküle, die D (2H Deuterium, Schwerer Wasserstoff) enthalten, im Restwasser anreichern (gegenüber dem natürlichen Mengenverhältnis von etwa 1:7000).

Stabile Isotope

Stabile Isotope sind die Isotope eines Elements, die nicht radioaktiv sind, also nicht zerfallen. Die meisten auf der Erde natürlich vorkommenden Isotope gelten als stabil oder haben extrem lange Halbwertszeiten. Beispiele für solche extrem langlebigen Isotope sind 232Th und 209Bi, dessen Radioaktivität erst 2003 nachgewiesen werden konnte.[1] Nuklide mit derartig langen Halbwertszeiten und stabile Nuklide werden primordiale Nuklide genannt.

In der Nuklidkarte sind die stabilen Isotope allgemein in einem mittleren Bereich zwischen den Beta-plus- und den Beta-minus-Strahlern zu finden.

Mit 10 stabilen Isotopen hat Zinn die meisten natürlich vorkommenden Isotope.

Von den 22 Reinelementen oder anisotopen Elementen existiert nur jeweils ein stabiles oder sehr langlebiges Isotop. Dies sind: Beryllium, Fluor, Natrium, Aluminium, Phosphor, Scandium, Mangan, Cobalt, Arsen, Yttrium, Niob, Rhodium, Iod, Cäsium, Praseodym, Terbium, Holmium, Thulium, Gold, Wismut, Thorium und Plutonium.

Die natürlich vorkommenden Isotope der drei letztgenannten Elemente, 209Bi, 232Th und 244Pu, haben Halbwertszeiten von 1,9 · 1019 Jahren, 1,4 · 1010 Jahren bzw. 8 · 107 Jahren.

Bekannte Isotope

Wasserstoff

Schwerer Wasserstoff (2H oder Deuterium) dient im Schwerwasserreaktor als Moderator. Überschwerer Wasserstoff (3H oder Tritium) ist radioaktiv. Er entsteht z. B. in der Atmosphäre durch die kosmische Strahlung und auch in Kernreaktoren. Tritium wurde zwischen etwa 1960 und 1998 in Leuchtfarben für Uhr-Zifferblätter usw. verwendet. In größeren Mengen soll es in Zukunft als ein Teil des Brennstoffs für Kernfusionsreaktoren erzeugt und gebraucht werden.

Kohlenstoff

Ein bekanntes Isotop ist das radioaktive 14C, das zur Altersbestimmung von organischen Materialien (Archäologie) benutzt wird (Radiokohlenstoffmethode). Kohlenstoff (C) liegt hauptsächlich in den stabilen Isotopen 12C und 13C vor.

Sauerstoff

Zur Untersuchung von Paläo-Temperaturen wird vor allem das Verhältnis der beiden stabilen Sauerstoffisotope 18O und 16O herangezogen.

Uran

Das Isotop 235U dient als Brennstoff in Kernkraftwerken. Für die meisten Reaktortypen muss das Natururan dazu an 235U angereichert werden. Fast reines 235U wird in Kernwaffen verwendet. In den meisten Kernwaffen wird heute jedoch Plutonium verwendet, da es ohne zusätzlichen Anreicherungsprozess aus abgebranntem Kernreaktorbrennstoff gewonnen werden kann.

Plutonium

239Pu hat die gleiche Verwendung wie 235U. 238Pu wird wegen seiner radioaktiven Zerfallswärme in der Raumfahrt zur Stromerzeugung in Radioisotopengeneratoren verwendet, wenn Solarzellen wegen zu großer Sonnenentfernung nicht mehr einsetzbar sind.

Isotope in der Analytik

(Siehe auch Isotopenuntersuchung)

In Messungen des optischen Spektrums mit genügender Auflösung können Isotope eines Elements an ihren Spektrallinien unterschieden werden (Isotopieverschiebung).

Die Isotopenzusammensetzung in einer Probe wird in der Regel mit einem Massenspektrometer bestimmt, im Fall von Spurenisotopen mittels Beschleuniger-Massenspektrometrie.

Radioaktive Isotope können oft anhand ihrer Zerfallsprodukte oder der abgegebenen ionisierenden Strahlung identifiziert werden.

Isotope spielen ferner eine Rolle in der NMR-Spektroskopie. So wird beispielsweise in der NMR-Spektroskopie organischer Verbindungen die Konzentration von 13C gemessen, da dieses Isotop im Gegensatz zum viel häufigeren 12C einen von null verschiedenen Kernspin und damit ein magnetisches Moment hat.

Isotope werden auch in der Aufklärung von Reaktionsmechanismen oder Metabolismen mit Hilfe der sogenannten Isotopenmarkierung verwendet.

Die Isotopenzusammensetzung des Wassers ist an verschiedenen Orten der Welt verschieden und charakteristisch. Diese Unterschiede erlauben es etwa bei Lebensmitteln wie Wein oder Käse, die Deklaration des Ursprungsortes zu überprüfen.

Die Untersuchung von bestimmten Isotopen-Mustern (insbesondere 13C-Isotopen-Mustern) in organischen Molekülen wird als Isotopomeren-Analyse bezeichnet. Sie erlaubt unter anderem die Bestimmung intrazellulärer Stoffflüsse in lebenden Zellen. Darüber hinaus ist die Analyse von 13C/12C-, 15N/14N- sowie 34S/32S-Verhältnissen in der Ökologie heute weit verbreitet. Anhand der Fraktionierung lassen sich Stoffflüsse in Nahrungsnetzen nachverfolgen oder die Trophieebenen einzelner Arten bestimmen.

In der Hydrologie ist es möglich durch das Verhältnis von Isotopen Rückschlüsse auf hydrologische Prozesse zu ziehen. Stabile Isotope dienen als natürliche Tracer. Dabei dient das Vienna Standard Mean Ocean Water (VSMOV) meistens als Referenz. Die Fraktionierung, also das Verhältnis von schweren zu leichten Isotopen ist durch unterschiedliche Effekte beeinflusst. Der Wasserkreislauf begleitet die meisten Stoffflüsse ober- und unterhalb der Erde.

Die Geochemie befasst sich mit deren Isotopen in Mineralen, Gesteinen, Boden, Wasser und Erdatmosphäre.

Literatur

  • Werner Stolz: Radioaktivität. Grundlagen, Messung, Anwendungen. 5. Auflage. Teubner, Wiesbaden 2005, ISBN 3-519-53022-8.
  • Bogdan Povh, K. Rith, C. Scholz, F. Zetsche: Teilchen und Kerne. Eine Einführung in die physikalischen Konzepte. 7. Auflage. Springer, Berlin/Heidelberg 2006, ISBN 978-3-540-36685-0.
  • Klaus Bethge, Gertrud Walter, Bernhard Wiedemann: Kernphysik. 2. Auflage. Springer, Berlin/Heidelberg 2001, ISBN 3-540-41444-4.
  • Hanno Krieger: Grundlagen der Strahlungsphysik und des Strahlenschutzes. 2. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0199-9

Einzelnachweis

  1. Pierre de Marcillac et al., Experimental detection of alpha-particles from the radioactive decay of natural bismuth, Nature 422, 876–878 (24. April 2003), Ergebnistabelle

Siehe auch

Weblinks








Creative Commons License