Dodecahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Regular Dodecahedron
Dodecahedron
(Click here for rotating model)
Type Platonic solid
Elements F = 12, E = 30
V = 20 (χ = 2)
Faces by sides 12{5}
Schläfli symbols {5,3}
Wythoff symbol 3 | 2 5
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Symmetry Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
References U23, C26, W5
Properties Regular convex
Dihedral angle 116.56505° = arccos(-1/√5)
Dodecahedron
5.5.5
(Vertex figure)
Icosahedron.png
Icosahedron
(dual polyhedron)
Dodecahedron
Net

In geometry, a dodecahedron (Greek δωδεκάεδρον, from δώδεκα, dōdeka "twelve" + ἕδρα hédra "base", "seat" or "face") is any polyhedron with twelve flat faces, but usually a regular dodecahedron is meant: a Platonic solid. It is composed of 12 regular pentagonal faces, with three meeting at each vertex, and is represented by the Schläfli symbol {5,3}. It has 20 vertices, 30 edges and 160 diagonals. Its dual polyhedron is the icosahedron, with Schläfli symbol {3,5}.

A large number of other (irregular) polyhedra also have twelve faces, most notably the topologically identical pyritohedron with Pyritohedral symmetry, and the rhombic dodecahedron with octahedral symmetry.

Dimensions

If the edge length of a regular dodecahedron is a, the radius of a circumscribed sphere (one that touches the dodecahedron at all vertices) is

r_u = a\frac{\sqrt{3}}{4} \left(1 + \sqrt{5}\right) \approx 1.401258538 \cdot a OEISA179296

and the radius of an inscribed sphere (tangent to each of the dodecahedron's faces) is

r_i = a\frac{1}{2} \sqrt{\frac{5}{2} +\frac{11}{10}\sqrt{5}} \approx 1.113516364 \cdot a

while the midradius, which touches the middle of each edge, is

r_m = a\frac{1}{4} \left(3 +\sqrt{5}\right) \approx 1.309016994 \cdot a

These quantities may also be expressed as

r_u = a\, \frac{\sqrt{3}}{2} \varphi
r_i = a\, \frac{\varphi^2}{2 \sqrt{3-\varphi}}
r_m = a\, \frac{\varphi^2}{2}

where φ is the golden ratio.

Note that, given a regular pentagonal dodecahedron of edge length one, ru is the radius of a circumscribing sphere about a cube of edge length φ, and ri is the apothem of a regular pentagon of edge length φ.

Area and volume

The surface area A and the volume V of a regular dodecahedron of edge length a are:

A = 3\sqrt{25+10\sqrt{5}} a^2 \approx 20.645728807a^2
V = \frac{1}{4} (15+7\sqrt{5}) a^3 \approx 7.6631189606a^3

Two-dimensional symmetry projections

The stellation diagram for the regular dodecahedron with the central pentagon highlighted. This diagram represents the dodecahedron face itself.
Animation of a net of a dodecahedron being folded

The dodecahedron has two special orthogonal projections, centered, on vertices and pentagonal faces, correspond to the A2 and H2 Coxeter planes.

Orthogonal projections
Centered by Vertex Edge Face
Image Dodecahedron t0 A2.png Dodecahedron t0 e.png Dodecahedron t0 H3.png
Projective
symmetry
[[3]] = [6] [2] [[5]] = [10]

In perspective projection, viewed above a pentagonal face, the dodecahedron can be seen as a linear-edged schlegel diagram, or stereographic projection as a spherical polyhedron. These projections are also used in showing the four-dimensional 120-cell, a regular 4-dimensional polytope, constructed from 120 dodecahedra, projecting it down to 3-dimensions.

Projection Orthogonal projection Perspective projection
Schlegel diagram Stereographic projection
Dodecahedron Dodecahedron t0 H3.png Dodecahedron schlegel diagram.png Dodecahedron stereographic projection.png
Dodecaplex 120-cell t0 H3.svg Schlegel wireframe 120-cell.png Stereographic polytope 120cell faces.png

Cartesian coordinates

Vertex coordinates:
     The orange vertices lie at (±1, ±1, ±1) and form a cube (dotted lines).
     The green vertices lie at (0, ±1/φ, ±φ) and form a rectangle on the yz plane.
     The blue vertices lie at (±1/φ, ±φ, 0) and form a rectangle on the xy plane.
     The pink vertices lie at (±φ, 0, ±1/φ) and form a rectangle on the xz plane.
The distance between adjacent vertices is 2/φ, and the distance from the origin to any vertex is √3.
φ = (1 + √5) / 2 is the golden ratio.

The following Cartesian coordinates define the vertices of a dodecahedron centered at the origin and suitably scaled and oriented:1

(±1, ±1, ±1)
(0, ±1/φ, ±φ)
(±1/φ, ±φ, 0)
φ, 0, ±1/φ)

where φ = (1 + √5) / 2 is the golden ratio (also written τ) ≈ 1.618. The edge length is 2/φ = √5 – 1. The containing sphere has a radius of √3.

Properties

  • The dihedral angle of a dodecahedron is 2 arctan(φ) or approximately 116.5650512 degrees (where again φ = (1 + √5) / 2, the golden ratio). OEISA137218
  • If the original dodecahedron has edge length 1, its dual icosahedron has edge length φ.
  • If the five Platonic solids are built with same volume, the dodecahedron has the shortest edges.
  • It has 43,380 nets.
  • The map-coloring number of a regular dodecahedron's faces is 4.
  • The distance between the vertices on the same face not connected by an edge is φ times the edge length,

Geometric relations

The regular dodecahedron is the third in an infinite set of truncated trapezohedra which can be constructed by truncating the two axial vertices of a pentagonal trapezohedron.

The stellations of the dodecahedron make up three of the four Kepler-Poinsot polyhedra.

A rectified dodecahedron forms an icosidodecahedron.

The regular dodecahedron has icosahedral symmetry Ih, Coxeter group [5,3], order 120, with an abstract group structure of A5 × Z2.

Icosahedron vs dodecahedron

When a dodecahedron is inscribed in a sphere, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.54%).

A regular dodecahedron with edge length 1 has more than three and a half times the volume of an icosahedron with the same length edges (7.663... compared with 2.181...).

A regular dodecahedron has 12 faces and 20 vertices, whereas a regular icosahedron has 20 faces and 12 vertices. Both have 30 edges.

Pyritohedron

Pyritohedron
Pyritohedron.png
A pyritohedron has 30 edges, divided into two lengths: 24 and 6 in each group.
Face polygon irregular pentagon
Coxeter diagrams CDel node.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png
CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Faces 12
Edges 30 (6+24)
Vertices 20 (8+12)
Symmetry group Th, [4,3+, (3*2), order 24
Rotation group T, [3,3]+, (332), order 12
Dual polyhedron Pseudoicosahedron
Properties convex
Net
Pyritohedron flat.png

A pyritohedron is a dodecahedron with pyritohedral (Th) symmetry. Like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not necessarily regular, so the structure normally has no fivefold symmetry axes. Its 30 edges are divided into two sets - containing 24 and 6 edges of the same length.

Although regular dodecahedra do not exist in crystals, the distorted, pyritohedron form occurs in the crystal pyrite, and it may be an inspiration for the discovery of the regular Platonic solid form.

Crystal pyrite

Its name comes from one of the two common crystal forms of pyrite, the other one being cubical.

Pyriteespagne.jpg
Cubic pyrite
Pyrite cristal.jpg
Pyritohedral
Ho-Mg-ZnQuasicrystal.jpg
Ho-Mg-Zn quasicrystal

Cartesian coordinates

The coordinates of the 8 vertices:

(±1, ±1, ±1)

The coordinates of the 12 vertices are the permutations of:

(0, 1+h, 1−h2)

where h is the height of the wedge roof above the faces of the cube. When h=1, the 6 edges degenerate to points and rhombic dodecahedron is formed. For the regular dodecahedron, h=(√5−1)/2, the golden ratio.

Geometric freedom

Pyritohedron animation.gif

The pyritohedron has a geometric degree of freedom with limiting cases of a cubic convex hull at one limit of colinear edges, and a rhombic dodecahedron as the other limit as 6 edges are degenerated to length zero. The regular dodecahedron represents a special intermediate case where all edges and angles are equal.

Special cases of the pyritohedron
1 : 1 1 : 1 2 : 1 1.3092... : 1 1 : 1 0 : 1
h=0 h=(√5−1)/2 h=1
Great stellated dodecahedron.png
Regular star, great stellated dodecahedron, with pentagons distorted into regular pentagrams
Concave pyritohedral dodecahedron.png
Concave pyritohedral dodecahedron
Pyritohedron cube.png
A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions.
Irregular dodecahedron.png
The geometric proportions of the pyritohedron in the Weaire–Phelan structure
Dodecahedron.png
A regular dodecahedron is an intermediate case with equal edge lengths.
Rhombicdodecahedron.jpg
A rhombic dodecahedron is the limiting case with the 6 crossedges reducing to length zero.

A regular dodecahedron can be formed from a cube in the following way: The top square in the cube is replaced by a "roof" composed of two pentagons, joined along the top of the roof. The diagonals in the pentagons parallel to the top of the roof coincide with two opposite sides of the square. The other five squares are replaced by a pair of pentagons in a similar way. The pyritohedron is constructed by changing the slope of these "roofs".

Other dodecahedra

Topologically identical2 irregular dodecahedra
Pentagonal truncated trapezohedron.png
The truncated pentagonal trapezohedron has D5d dihedral symmetry.
Pyritohedron.png
The pyritohedron has Th tetrahedral symmetry.

The term dodecahedron is also used for other polyhedra with twelve faces, most notably the rhombic dodecahedron which is dual to the cuboctahedron (an Archimedean solid) and occurs in nature as a crystal form.3 The Platonic solid dodecahedron can be called a pentagonal dodecahedron or a regular dodecahedron to distinguish it. The pyritohedron is an irregular pentagonal dodecahedron.

There are 6,384,634 topologically distinct convex dodecahedra, excluding mirror images, having at least 8 vertices.4 (Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.)

Topologically distinct dodecahedra include:

History and uses

Roman dodecahedron
Ho-Mg-Zn quasicrystal
Omnidirectional sound source
A climbing wall consisting of three dodecahedral pieces

Dodecahedral objects have found some practical applications, and have also played a role in the visual arts and in philosophy.

The dodecahedron was the last of the Platonic solids to be discovered. Iamblichus states that Hippasus, a Pythagorean, perished in the sea, because he boasted that he first divulged "the sphere with the twelve pentagons." 5 Plato's dialogue Timaeus (c. 360 B.C.) associates the other four platonic solids with the four classical elements, adding that there is a fifth figure (which is made out of twelve pentagons), the dodecahedron—"this God used in the delineation of the universe."6 Aristotle postulated that the heavens were made of a fifth element, aithêr (aether in Latin, ether in American English), but he had no interest in matching it with Plato's fifth solid.

A few centuries later, small, hollow bronze Roman dodecahedra were made and have been found in various Roman ruins in Europe. Their purpose is not certain.

In 20th-century art, dodecahedra appear in the work of M.C. Escher, such as his lithograph Reptiles (1943), and in his Gravitation. In Salvador Dalí's painting The Sacrament of the Last Supper (1955), the room is a hollow dodecahedron.

In modern role-playing games, the dodecahedron is often used as a twelve-sided die, one of the more common polyhedral dice. Some quasicrystals have dodecahedral shape (see figure). Some regular crystals such as garnet and diamond are also said to exhibit "dodecahedral" habit, but this statement actually refers to the rhombic dodecahedron shape.3

Immersive media, a Camera manufacturing company, has made the Dodeca 2360 camera, the world's first 360°, full motion camera which captures high-resolution video from every direction simultaneously at more than 100 million pixels per second or 30 frames per second. It is based on dodecahedron.

The popular puzzle game Megaminx is in the shape of a dodecahedron.

In the children's novel The Phantom Tollbooth, the Dodecahedron appears as a character in the land of Mathematics. Each of his faces wears a different expression—e.g. happy, angry, sad—which he swivels to the front as required to match his mood.

Dodecahedron is the name of avant-garde black metal band from Netherlands.7

Shape of the universe

Various models have been proposed for the global geometry of the universe. In addition to the primitive geometries, these proposals include the Poincaré dodecahedral space, a positively curved space consisting of a dodecahedron whose opposite faces correspond (with a small twist). This was proposed by Jean-Pierre Luminet and colleagues in 200389 and an optimal orientation on the sky for the model was estimated in 2008.10

In Bertrand Russell's 1954 short story "THE MATHEMATICIAN'S NIGHTMARE: The Vision of Professor Squarepunt," the number 5 said: "I am the number of fingers on a hand. I make pentagons and pentagrams. And but for me dodecahedra could not exist; and, as everyone knows, the universe is a dodecahedron. So, but for me, there could be no universe."

As a graph

A Hamiltonian cycle in a dodecahedron.

The skeleton of the dodecahedron—the vertices and edges—form a graph. This graph can also be constructed as the generalized Petersen graph G(10, 2). The high degree of symmetry of the polygon is replicated in the properties of this graph, which is distance-transitive, distance-regular, and symmetric. The automorphism group has order 120. The vertices can be colored with 3 colors, as can the edges, and the diameter is 5.11

The dodecahedral graph is Hamiltonian—there is a cycle containing all the vertices. Indeed, this name derives from a mathematical game invented in 1857 by William Rowan Hamilton, the icosian game. The game's object was to find a Hamiltonian cycle along the edges of a dodecahedron.

Related polyhedra and tilings

The regular dodecahedron is topologically related to a series of tilings by vertex figure n3.

Spherical
Polyhedra
Polyhedra Euclidean Hyperbolic tilings
Spherical trigonal hosohedron.png
{2,3}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t0.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-63-t0.png
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 237-1.png
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 238-1.png
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
... H2 tiling 23i-1.png
(∞,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

The dodecahedron can be transformed by a truncation sequence into its dual, the icosahedron:

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
{5,3} t{5,3} r{5,3} 2t{5,3}=t{3,5} 2r{5,3}={3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg POV-Ray-Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5
Uniform octahedral polyhedra
Symmetry: [4,3], (*432) [4,3]+
(432)
[1+,4,3] = [3,3]
(*332)
[3+,4]
(3*2)
{4,3} t{4,3} r{4,3}
r{31,1}
t{3,4}
t{31,1}
{3,4}
{31,1}
rr{4,3}
s2{3,4}
tr{4,3} sr{4,3} h{4,3}
{3,3}
h2{4,3}
t{3,3}
s{4,3}
s{31,1}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel nodes 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel nodes 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel nodes.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png =
CDel nodes 10ru.pngCDel split2.pngCDel node.png or CDel nodes 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png or CDel nodes 01rd.pngCDel split2.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png =
CDel node h.pngCDel split1.pngCDel nodes hh.png
Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t01.svg Uniform polyhedron-43-t1.svg
Uniform polyhedron-33-t02.png
Uniform polyhedron-43-t12.svg
Uniform polyhedron-33-t012.png
Uniform polyhedron-43-t2.svg
Uniform polyhedron-33-t1.png
Uniform polyhedron-43-t02.png
Rhombicuboctahedron uniform edge coloring.png
Uniform polyhedron-43-t012.png Uniform polyhedron-43-s012.png Uniform polyhedron-33-t0.pngUniform polyhedron-33-t2.png Uniform polyhedron-33-t01.pngUniform polyhedron-33-t12.png Uniform polyhedron-43-h01.svg
Uniform polyhedron-33-s012.png
Duals to uniform polyhedra
V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35
CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Octahedron.svg Triakisoctahedron.jpg Rhombicdodecahedron.jpg Tetrakishexahedron.jpg Hexahedron.svg Deltoidalicositetrahedron.jpg Disdyakisdodecahedron.jpg Pentagonalicositetrahedronccw.jpg Tetrahedron.svg Triakistetrahedron.jpg POV-Ray-Dodecahedron.svg

The regular dodecahedron is a member of a sequence of otherwise non-uniform polyhedra and tilings, composed of pentagons with face configurations (V3.3.3.3.n). (For n > 6, the sequence consists of tilings of the hyperbolic plane.) These face-transitive figures have (n32) rotational symmetry.

Dimensional family of snub polyhedra and tilings: 3.3.3.3.n
Symmetry
n32
[n,3]+
Spherical Euclidean Compact hyperbolic Paracompact
232
[2,3]+
D3
332
[3,3]+
T
432
[4,3]+
O
532
[5,3]+
I
632
[6,3]+
P6
732
[7,3]+
832
[8,3]+...
∞32
[∞,3]+
Snub
figure
Spherical trigonal antiprism.png
3.3.3.3.2
Spherical snub tetrahedron.png
3.3.3.3.3
Spherical snub cube.png
3.3.3.3.4
Spherical snub dodecahedron.png
3.3.3.3.5
Uniform tiling 63-snub.png
3.3.3.3.6
Uniform tiling 73-snub.png
3.3.3.3.7
Uniform tiling 83-snub.png
3.3.3.3.8
Uniform tiling i32-snub.png
3.3.3.3.∞
Coxeter
Schläfli
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{2,3}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{4,3}
CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{5,3}
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{6,3}
CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{7,3}
CDel node h.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{8,3}
CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{∞,3}
Snub
dual
figure
Hexahedron.svg
V3.3.3.3.2
POV-Ray-Dodecahedron.svg
V3.3.3.3.3
Pentagonalicositetrahedroncw.jpg
V3.3.3.3.4
Pentagonalhexecontahedroncw.jpg
V3.3.3.3.5
Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg
V3.3.3.3.6
Ord7 3 floret penta til.png
V3.3.3.3.7
V3.3.3.3.8 V3.3.3.3.∞
Coxeter CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png

Vertex arrangement

The dodecahedron shares its vertex arrangement with four nonconvex uniform polyhedra and three uniform polyhedron compounds.

Five cubes fit within, with their edges as diagonals of the dodecahedron's faces, and together these make up the regular polyhedral compound of five cubes. Since two tetrahedra can fit on alternate cube vertices, five and ten tetrahedra can also fit in a dodecahedron.

Great stellated dodecahedron.png
Great stellated dodecahedron
Small ditrigonal icosidodecahedron.png
Small ditrigonal icosidodecahedron
Ditrigonal dodecadodecahedron.png
Ditrigonal dodecadodecahedron
Great ditrigonal icosidodecahedron.png
Great ditrigonal icosidodecahedron
Compound of five cubes.png
Compound of five cubes
Compound of five tetrahedra.png
Compound of five tetrahedra
Compound of ten tetrahedra.png
Compound of ten tetrahedra

Stellations

The 3 stellations of the dodecahedron are all regular (nonconvex) polyhedra: (Kepler–Poinsot polyhedra)

0 1 2 3
Stellation Dodecahedron.png
Dodecahedron
Small stellated dodecahedron.png
Small stellated dodecahedron
Great dodecahedron.png
Great dodecahedron
Great stellated dodecahedron.png
Great stellated dodecahedron
Facet diagram Zeroth stellation of dodecahedron facets.svg First stellation of dodecahedron facets.svg Second stellation of dodecahedron facets.svg Third stellation of dodecahedron facets.svg

See also

References

  1. ^ Weisstein, Eric W., "Icosahedral group", MathWorld.
  2. ^ Polyhedra are "topologically identical" if they have the same intrinsic arrangement of faces and vertices, such that one can be distorted into the other simply by changing the lengths of edges or the angles between edges or faces.
  3. ^ a b Dodecahedral Crystal Habit
  4. ^ Counting polyhedra
  5. ^ Florian Cajori, A History of Mathematics (1893)
  6. ^ Plato, Timaeus, Jowett translation [line 1317-8]; the Greek word translated as delineation is 'diazographein', painting in semblance of life.
  7. ^ "Dodecahedron on Metal Archives". 
  8. ^ "Is the universe a dodecahedron?", article at PhysicsWeb.
  9. ^ Luminet, Jean-Pierre; Jeff Weeks, Alain Riazuelo, Roland Lehoucq, Jean-Phillipe Uzan (2003-10-09). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". Nature 425 (6958): 593–5. arXiv:astro-ph/0310253. Bibcode:2003Natur.425..593L. doi:10.1038/nature01944. PMID 14534579. 
  10. ^ Roukema, Boudewijn; Zbigniew Buliński; Agnieszka Szaniewska; Nicolas E. Gaudin (2008). "A test of the Poincaré dodecahedral space topology hypothesis with the WMAP CMB data". Astronomy and Astrophysics 482 (3): 747. arXiv:0801.0006. Bibcode:2008A&A...482..747L. doi:10.1051/0004-6361:20078777. 
  11. ^ Weisstein, Eric W., "Dodecahedral Graph", MathWorld.
  • Plato's Fourth Solid and the "Pyritohedron", by Paul Stephenson, 1993, The Mathematical Gazette, Vol. 77, No. 479 (Jul., 1993), pp. 220–226 [1]
  • THE GREEK ELEMENTS

External links








Creative Commons License