KCNC2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Potassium voltage-gated channel, Shaw-related subfamily, member 2
Identifiers
Symbols KCNC2 ; KV3.2
External IDs OMIM176256 MGI96668 HomoloGene71199 IUPHAR: Kv3.2 GeneCards: KCNC2 Gene
Orthologs
Species Human Mouse
Entrez 3747 268345
Ensembl ENSG00000166006 ENSMUSG00000035681
UniProt Q96PR1 E9QLW0
RefSeq (mRNA) NM_001260497 NM_001025581
RefSeq (protein) NP_001247426 NP_001020752
Location (UCSC) Chr 12:
75.43 – 75.6 Mb
Chr 10:
112.27 – 112.47 Mb
PubMed search [1] [2]

Potassium voltage-gated channel subfamily C member 2 is a protein that in humans is encoded by the KCNC2 gene.121 The protein encoded by this gene is a voltage-gated potassium channel subunit.3

Expression pattern

Kv3.1 and Kv3.2 channels are prominently expressed in neurons that fire at high frequency. Kv3.2 channels are prominently expressed in brain (fast-spiking GABAergic interneurons of the neocortex, hippocampus, and caudate nucleus; terminal fields of thalamocortical projections), and in retinal ganglion cells.453

Physiological role

Kv3.1/Kv3.2 conductance is necessary and kinetically optimized for high-frequency action potential generation.56 Sometimes in heteromeric complexes with Kv3.1; important for the high-frequency firing of fast spiking GABAergic interneurons and retinal ganglion cells; and GABA release via regulation of action potential duration in presynaptic terminals.34

Pharmacological properties

Kv3.2 currents in heterologous systems are highly sensitive to external tetraethylammonium (TEA) or 4-aminopyridine (4-AP) (IC50 values are 0.1 mM for both of the drugs).35 This can be useful in identifying native channels.5

Transcript variants

There are four transcript variants of Kv3.2 gene: Kv3.2a, Kv3.2b, Kv3.2c, Kv3.2d. Kv3.2 isoforms differ only in their C-terminal sequence.7

References

  1. ^ a b Haas M, Ward DC, Lee J, Roses AD, Clarke V, D'Eustachio P, Lau D, Vega-Saenz de Miera E, Rudy B (Mar 1994). "Localization of Shaw-related K+ channel genes on mouse and human chromosomes". Mamm Genome 4 (12): 711–5. doi:10.1007/BF00357794. PMID 8111118. 
  2. ^ Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (Dec 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol Rev 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. 
  3. ^ a b c d Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol. Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104. 
  4. ^ a b Kolodin YO (2008-04-27). "Ionic conductances underlying excitability in tonically firing retinal ganglion cells of adult rat". Retrieved 2008-10-20. 
  5. ^ a b c d Rudy B, McBain CJ (September 2001). "Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing". Trends in Neurosciences 24 (9): 517–26. doi:10.1016/S0166-2236(00)01892-0. PMID 11506885. 
  6. ^ Lien CC, Jonas P (March 2003). "Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons". Journal of Neuroscience 23 (6): 2058–68. PMID 12657664. 
  7. ^ Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, Moreno H, Nadal MS, Hernandez-Pineda R, Hernandez-Cruz A, Erisir A, Leonard C, Vega-Saenz de Miera E (April 1999). "Contributions of Kv3 channels to neuronal excitability". Annals of the New York Academy of Sciences 868 (1 MOLECULAR AND): 304–43. doi:10.1111/j.1749-6632.1999.tb11295.x. PMID 10414303. 

External links









Creative Commons License