List of mesons

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The decay of a kaon (K+) into three pions (2 π+, 1 π) is a process that involves both weak and strong interactions.

Weak interactions: The strange antiquark (s) of the kaon transmutes into an up antiquark (u) by the emission of a W+ boson; the W+ boson subsequently decays into a down antiquark (d) and an up quark (u).

Strong interactions: An up quark (u) emits a gluon (g) which decays into a down quark (d) and a down antiquark (d).
This list is of all known and predicted scalar, pseudoscalar and vector mesons. See list of particles for a more detailed list of particles found in particle physics.

Mesons are unstable subatomic particles composed of one quark and one antiquark. They are part of the hadron particle family – particles made of quarks. The other members of the hadron family are the baryons – subatomic particles composed of three quarks. The main difference between mesons and baryons is that mesons have integer spin (thus are bosons) while baryons are fermions (half-integer spin). Because mesons are bosons, the Pauli exclusion principle does not apply to them. Because of this, they can act as force mediating particles on short distances, and thus play a part in processes such as the nuclear interaction.

Since mesons are composed of quarks, they participate in both the weak and strong interactions. Mesons with net electric charge also participate in the electromagnetic interaction. They are classified according to their quark content, total angular momentum, parity, and various other properties such as C-parity and G-parity. While no meson is stable, those of lower mass are nonetheless more stable than the most massive mesons, and are easier to observe and study in particle accelerators or in cosmic ray experiments. They are also typically less massive than baryons, meaning that they are more easily produced in experiments, and will exhibit higher-energy phenomena sooner than baryons would. For example, the charm quark was first seen in the J/Psi meson (J/ψ) in 1974,12 and the bottom quark in the upsilon meson (ϒ) in 1977.3

Each meson has a corresponding antiparticle (antimeson) where quarks are replaced by their corresponding antiquarks and vice-versa. For example, a positive pion (π+) is made of one up quark and one down antiquark; and its corresponding antiparticle, the negative pion (π), is made of one up antiquark and one down quark. Some experiments show the evidence of tetraquarks – "exotic" mesons made of two quarks and two antiquarks, but the particle physics community as a whole does not view their existence as likely, although still possible.4

The symbols encountered in these lists are: I (isospin), J (total angular momentum), P (parity), C (C-parity), G (G-parity), u (up quark), d (down quark), s (strange quark), c (charm quark), b (bottom quark), Q (charge), B (baryon number), S (strangeness), C (charm), and B′ (bottomness), as well as a wide array of subatomic particles (hover for name).

Summary table

Because this table was initially derived from published results and many of those results were preliminary, as many as 64 of the mesons in the following table may not exist or have the wrong mass or quantum numbers.

Meson summary table5
Light unflavoured
(S=C=B=0)
Strange
(S=±1, C=B=0)
Charmed, strange
(C=S=±1)
cc
IG(JPC) IG(JPC) IG(JP) IG(JP) IG(JPC)
π± 1(0) π
2
(1670)
1(2−+) K± 1/2(0) D±
s
0(0) η
c
(1S)
0+(0−+)
π0 1(0−+) φ(1680) 0(1−−) K0 1/2(0) D
s
0(??) J/ψ(1S) 0-(1−-)
η 0+(0−+) ρ
3
(1690)
1+(3−−) K0
S
1/2(0) D*
s0
(2317)±
0(0+) χ
c0
(1P)
0+(0++)
f
0
(500)
0+(0++) ρ(1700) 1+(1−−) K0
L
1/2(0) D
s1
(2460)±
0(1+) χ
c1
(1P)
0+(1++)
ρ(770) 1+(1−−) a
2
(1700)
1(2++) K*
0
(800)
1/2(0+) D
s1
(2536)±
0(1+) h
c
(1P)
 ??(1+-)
ω(782) 0(1−−) f0(1710) 0+(0++) K*(892) 1/2(1) D
s2
(2573)
0(??) χ
c2
(1P)
0+(2++)
η′ (958) 0+(0−+) η(1760) 0+(0−+) K
1
(1270)
1/2(1+) D*
s1
(2700)±
0(1-) η
c
(2S)
0+(0-+)
f
0
(980)
0+(0++) π(1800) 1(0−+) K
1
(1400)
1/2(1+) D*
sJ
(2860)±
0(??) ψ(2S) 0-(1--)
a
0
(980)
1(0++) f
2
(1810)
0+(2++) K*(1410) 1/2(1) D
sJ
(3040)±
0(??) ψ(3770) 0-(1--)
φ(1020) 0(1−−) X(1835)  ??(?−+) K*
0
(1430)
1/2(0+) Bottom
(B=±1)
X(3872) 0?(??+)
h
1
(1170)
0(1+−) φ
3
(1850)
0(3−−) K*
2
(1430)
1/2(2+) X(3915) 0+(??+)
b
1
(1235)
1+(1+−) η
2
(1870)
0+(2−+) K(1460) 1/2(0) B± 1/2(0-) χ
c2
(2P)
0+(2++)
a
1
(1260)
1(1++) π
2
(1880)
1(2−+) K
2
(1580)
1/2(2) B0 1/2(0-) X(3940)  ??(???)
f
2
(1270)
0+(2++) ρ(1900) 1+(1−−) K(1630) 1/2(??) B±/B0 Admixture ψ(4040) 0-(1--)
f
1
(1285)
0+(1++) f
2
(1910)
0+(2++) K
1
(1650)
1/2(1+) B±/B0/B0
s
/b-baryon
Admixture
X(4050)±  ?(??)
η(1295) 0+(0−+) f
2
(1950)
0+(2++) K*(1680) 1/2(1) X(4140) 0+(??+)
π(1300) 1(0−+) ρ
3
(1990)
1+(3−−) K
2
(1770)
1/2(2) Vcb and Vub CKM Matrix
Admixture
ψ(4160) 0-(1--)
a
2
(1320)
1(2++) f
2
(2010)
0+(2++) K*
3
(1780)
1/2(3) X(4160)  ??(???)
f
0
(1370)
0+(0++) f
0
(2020)
0+(0++) K
2
(1820)
1/2(2) B* 1/2(1-) X(4250)±  ?(??)
h
1
(1380)
 ?(1+−) a
4
(2040)
1(4++) K(1830) 1/2(0) B*
J
(5732)
 ?(??) X(4260)  ??(1--)
π
1
(1400)
1(1−+) f
4
(2050)
0+(4++) K*
0
(1950)
1/2(0+) B
1
(5721)0
1/2(1+) X(4350) 0+(??+)
η(1405) 0+(0−+) π
2
(2100)
1(2−+) K*
2
(1980)
1/2(2+) B*
1
(5721)0
1/2(2+) X(4360)  ??(1--)
f
1
(1420)
0+(1++) f
0
(2100)
0+(0++) K*
0
(2045)
1/2(4+) Bottom, strange
(B=±1, S=∓1)
ψ(4415) 0-(1--)
ω(1420) 0(1−−) f
2
(2150)
0+(2++) K
2
(2250)
1/2(2) X(4430)±  ?(??)
f
2
(1430)
0+(2++) ρ(2150) 1+(1−−) K
3
(2320)
1/2(3+) B0
s
0(0-) X(4660)  ??(1--)
a
0
(1450)
1(0++) φ(2170) 0(1−−) K*
5
(2380)
1/2(5) B*
s
0(1-) bb
ρ(1450) 1+(1−−) f
0
(2200)
0+(0++) k
4
(2500)
1/2(4) B
s1
(5830)0
0(1+) η
b
(1S)
0+(0-+)
η(1475) 0+(0−+) fJ(2200) 0+(2++
or 4++)
K(3100)  ??(???) B*
s2
(5840)0
0(2+) Υ(1S) 0-(1--)
f
0
(1500)
0+(0++) Charmed
(C=±1)
B*
sJ
(5850)
 ?(??) χ
b0
(1P)
0+(0++)
f
1
(1510)
0+(1++) η(2225) 0+(0−+) Bottom, charmed
(B=C=±1)
χ
b1
(1P)
0+(1++)
f′
1
(1525)
0+(2++) ρ
3
(2250)
1+(3−−) D± 1/2(0) h
b
(1P)
 ??(1+-)
f
2
(1565)
0+(2++) f2(2300) 0+(2++) D0 1/2(0) B±
c
0(0) χ
2b
(1P)
0+(2++)
ρ(1570) 1+(1−−) f
4
(2300)
0+(4++) D*(2007)0 1/2(1) Υ(2S) 0-(1--)
h
1
(1595)
0(1+−) f
0
(2330)
0+(0++) D*(2010)± 1/2(1) Υ(1D) 0-(2--)
π
1
(1600)
1(1−+) f
2
(2340)
0+(2++) D*
0
(2400)0
1/2(0+) χ
b0
(2P)
0+(0++)
a
1
(1640)
1(1++) ρ
5
(2350)
1+(5−−) D*
0
(2400)±
1/2(0+) χ
b1
(2P)
0+(1++)
f
2
(1640)
0+(2++) a
6
(2450)
1(6++) D
1
(2420)0
1/2(1+) Υ(4S) 0-(1--)
η
2
(1645)
0+(2−+) f
6
(2510)
0+(6++) D
1
(2420)±
1/2(??) X(10610)±  ?+(1+)
ω(1650) 0(1−−) Other Light D
1
(2430)0
1/2(1+) X(10650)±  ?+(1+)
ω
3
(1670)
0(3−−) Further States D*
2
(2460)0
1/2(2+) Υ(10860) 0-(1--)
D*
2
(2460)±
1/2(2+) Υ(11020) 0-(1--)
D(2550)0 1/2(0-)
D(2600) 1/2(??)
D*(2640)± 1/2(??)
D(2750) 1/2(??)

Meson properties

The following lists detail all known and predicted pseudoscalar (JP = 0) and vector (JP = 1) mesons.

The properties and quark content of the particles are tabulated below; for the corresponding antiparticles, simply change quarks into antiquarks (and vice-versa) and flip the sign of Q, B, S, C, and B′. Particles with next to their names have been predicted by the standard model but not yet observed. Values in red have not been firmly established by experiments, but are predicted by the quark model and are consistent with the measurements.

Pseudoscalar mesons

Pseudoscalar mesons
Particle name Particle
symbol
Antiparticle
symbol
Quark
content
Rest mass (MeV/c2) IG JPC S C B' Mean lifetime (s) Commonly decays to

(>5% of decays)

Pion6 π+ π ud 139.57018±0.00035 1 0 0 0 0 (2.6033±0.0005)×10−8 μ+ + ν
μ
Pion7 π0 Self \mathrm{\tfrac{u\bar{u} - d\bar{d}}{\sqrt{2}}}\,[a] 134.9766±0.0006 1 0−+ 0 0 0 (8.4±0.5)×10−17 γ + γ
Eta meson8 η Self \mathrm{\tfrac{u\bar{u} + d\bar{d} - 2s\bar{s}}{\sqrt{6}}}\,[a] 547.853±0.024 0+ 0−+ 0 0 0 (5.0±0.3)×10−19[b] γ + γ or
π0 + π0 + π0 or

π+ + π0 + π

Eta prime meson9 η′(958) Self \mathrm{\tfrac{u\bar{u} + d\bar{d} + s\bar{s}}{\sqrt{3}}}\,[a] 957.78±0.06 0+ 0−+ 0 0 0 (3.39±0.16)×10−21[b] π+ + π + η or

(ρ0 + γ) / (π+ + π + γ) or
π0 + π0 + η

Charmed eta meson10 η
c
(1S)
Self cc 2980.3±1.2 0+ 0−+ 0 0 0 (2.30±0.17)×10−23[b] See η
c
decay modes
Bottom eta meson11 η
b
(1S)
Self bb 9390.9±2.8 0+ 0+ 0 0 0 Unknown See η
b
decay modes
Kaon12 K+ K us 493.677±0.016 12 0 1 0 0 (1.2380±0.0021)×10−8 μ+ + ν
μ
or

π+ + π0 or
π0 + e+ + ν
e

Kaon13 K0 K0 ds 497.614±0.024 12 0 1 0 0 [c] [c]
K-Short14 K0
S
Self \mathrm{\tfrac{d\bar{s} - s\bar{d}}{\sqrt{2}}}\,[e] 497.614±0.024[d] 12 0 (*) 0 0 (8.953±0.005)×10−11 π+ + π or

π0 + π0

K-Long15 K0
L
Self \mathrm{\tfrac{d\bar{s} + s\bar{d}}{\sqrt{2}}}\,[e] 497.614±0.024[d] 12 0 (*) 0 0 (5.116±0.020)×10−8 π± + e + ν
e
or

π± + μ + ν
μ
or

π0 + π0 + π0 or
π+ + π0 + π

D meson16 D+ D cd 1869.60±0.16 12 0 0 +1 0 (1.040±0.007)×10−12 See D+ decay modes
D meson17 D0 D0 cu 1864.83±0.14 12 0 0 +1 0 (4.101±0.015)×10−13 See D0 decay modes
strange D meson18 D+
s
D
s
cs 1968.47±0.33 0 0 +1 +1 0 (5.00±0.07)×10−13 See D+
s
decay modes
B meson19 B+ B ub 5279.15±0.31 12 0 0 0 +1 (1.638±0.011)×10−12 See B+ decay modes
B meson20 B0 B0 db 5279.50±0.30 12 0 0 0 +1 (1.530±0.009)×10−12 See B0 decay modes
Strange B meson21 B0
s
B0
s
sb 5366.3±0.6 0 0 −1 0 +1 1.472+0.024
−0.026
×10−12
See B0
s
decay modes
Charmed B meson22 B+
c
B
c
cb 6277±6 0 0 0 +1 +1 (4.53±0.41)×10−13 See B+
c
decay modes

[a] ^ Makeup inexact due to non-zero quark masses.
[b] ^ PDG reports the resonance width (Γ). Here the conversion τ = ħΓ is given instead.
[c] ^ Strong eigenstate. No definite lifetime (see kaon notes below)
[d] ^ The mass of the K0
L
and K0
S
are given as that of the K0. However, it is known that a difference between the masses of the K0
L
and K0
S
on the order of 2.2×10−11 MeV/c2 exists.15
[e] ^ Weak eigenstate. Makeup is missing small CP–violating term (see notes on neutral kaons below).

Vector mesons

Vector mesons
Particle name Particle
symbol
Antiparticle
symbol
Quark
content
Rest mass (MeV/c2) IG JPC S C B' Mean lifetime (s) Commonly decays to

(>5% of decays)

Charged rho meson23 ρ+(770) ρ(770) ud 775.11±0.34 1+ 1 0 0 0 ~4.5×10−24[f][g] π± + π0
Neutral rho meson23 ρ0(770) Self \mathrm{\tfrac{u\bar{u}-d\bar{d}}{\sqrt 2}}\, 775.49±0.34 1+ 1−− 0 0 0 ~4.5×10−24[f][g] π+ + π
Omega meson24 ω(782) Self \mathrm{\tfrac{u\bar{u} + d\bar{d}}{\sqrt{2}}}\, 782.65±0.12 0 1−− 0 0 0 (7.75±0.07)×10−23[f] π+ + π0 + π or

π0 + γ

Phi meson25 φ(1020) Self ss 1019.445±0.020 0 1−− 0 0 0 (1.55±0.01)×10−22[f] K+ + K or
K0
S
+ K0
L
or

(ρ + π) / (π+ + π0 + π)
J/Psi26 J/ψ Self cc 3096.916±0.011 0 1−− 0 0 0 (7.09±0.21)×10−21[f] See J/ψ(1S) decay modes
Upsilon meson27 ϒ(1S) Self bb 9460.30±0.26 0 1−− 0 0 0 (1.22±0.03)×10−20[f] See ϒ(1S) decay modes
Kaon28 K∗+ K∗− us 891.66±0.026 12 1 1 0 0 ~7.35×10−20[f][g] See K(892) decay modes
Kaon28 K∗0 K∗0 ds 895.94±0.22 12 1 1 0 0 (7.346±0.002)×10−20[f] See K(892) decay modes
D meson29 D∗+(2010) D∗−(2010) cd 2010.25±0.14 12 1 0 +1 0 (6.9±1.9)×10−21[f] D0 + π+ or
D+ + π0
D meson30 D∗0(2007) D∗0(2007) cu 2006.96±0.16 12 1 0 +1 0 >3.1×10−22[f] D0 + π0 or
D0 + γ
strange D meson31 D∗+
s
D∗−
s
cs 2112.3±0.5 0 1 +1 +1 0 >3.4×10−22[f] D∗+ + γ or
D∗+ + π0
B meson32 B∗+ B∗− ub 5325.1±0.5 12 1 0 0 +1 Unknown B+ + γ
B meson32 B∗0 B∗0 db 5325.1±0.5 12 1 0 0 +1 Unknown B0 + γ
Strange B meson33 B∗0
s
B∗0
s
sb 5415.4±1.4 0 1 −1 0 +1 Unknown B0
s
+γ
Charmed B meson B∗+
c
B∗−
c
cb Unknown 0 1 0 +1 +1 Unknown Unknown

[f] ^ PDG reports the resonance width (Γ). Here the conversion τ = ħΓ is given instead.
[g] ^ The exact value depends on the method used. See the given reference for detail.

Notes on neutral kaons

There are two complications with neutral kaons:34

Note that these issues also exist in principle for other neutral flavored mesons; however, the weak eigenstates are considered separate particles only for kaons because of their dramatically different lifetimes.34

See also


References

  1. ^ J.J. Aubert et al. (1974)
  2. ^ J.E. Augustin et al. (1974)
  3. ^ S.W. Herb et al. (1977)
  4. ^ C. Amsler et al. (2008): Charmonium States
  5. ^ http://pdg.lbl.gov/2012/tables/rpp2012-qtab-mesons.pdf
  6. ^ N. Nakamura et al. (2010): Particle listings – π±
  7. ^ N. Nakamura et al. (2010): Particle listings – π0
  8. ^ N. Nakamura et al. (2010): Particle listings – η
  9. ^ N. Nakamura et al. (2010): Particle listings – η′
  10. ^ N. Nakamura et al. (2010): Particle listings – η
    c
  11. ^ N. Nakamura et al. (2010): Particle listings – η
    b
  12. ^ N. Nakamura et al. (2010): Particle listings – K±
  13. ^ N. Nakamura et al. (2010): Particle listings – K0
  14. ^ N. Nakamura et al. (2010): Particle listings – K0
    S
  15. ^ a b N. Nakamura et al. (2010): Particle listings – K0
    L
  16. ^ N. Nakamura et al. (2010): Particle listings – D±
  17. ^ N. Nakamura et al. (2010): Particle listings – D0
  18. ^ N. Nakamura et al. (2010): Particle listings – D±
    s
  19. ^ N. Nakamura et al. (2010): Particle listings – B±
  20. ^ N. Nakamura et al. (2010): Particle listings – B0
  21. ^ N. Nakamura et al. (2010): Particle listings – B0
    s
  22. ^ N. Nakamura et al. (2010): Particle listings – B±
    c
  23. ^ a b N. Nakamura et al. (2010): Particle listings – ρ
  24. ^ N. Nakamura et al. (2010): Particle listings – ω(782)
  25. ^ N. Nakamura et al. (2010): Particle listings – φ
  26. ^ N. Nakamura et al. (2010): Particle listings – J/Ψ
  27. ^ N. Nakamura et al. (2010): Particle listings – ϒ(1S)
  28. ^ a b N. Nakamura et al. (2010): Particle listings – K(892)
  29. ^ N. Nakamura et al. (2010): Particle listings – D∗±(2010)
  30. ^ N. Nakamura et al. (2010): Particle listings – D∗0(2007)
  31. ^ N. Nakamura et al. (2010): Particle listings – D∗±
    s
  32. ^ a b N. Nakamura et al. (2010): Particle listings – B
  33. ^ N. Nakamura et al. (2010): Particle listings – B
    s
  34. ^ a b J.W. Cronin (1980)

Bibliography

External links








Creative Commons License