Pierre de Fermat
Pierre de Fermat  

Pierre de Fermat


Born  1601^{1} BeaumontdeLomagne, France 
Died  1665 Jan 12 Castres, France 
Residence  France 
Nationality  French 
Fields  Mathematics and Law 
Known for  Number theory Analytic geometry Fermat's principle Probability Fermat's Last Theorem Adequality 
Influences  François Viète 
Pierre de Fermat (French: [pjɛːʁ dəfɛʁma]; 17^{2} August 1601 or 1607^{1} – 12 January 1665) was a French lawyer at the Parlement of Toulouse, France, and an amateur mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of the differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for Fermat's Last Theorem, which he described in a note at the margin of a copy of Diophantus' Arithmetica.
Contents
Life and work
Fermat was born in the first decade of the 17th century in BeaumontdeLomagne (presentday TarnetGaronne), France; the late 15thcentury mansion where Fermat was born is now a museum. He was from Gascony, where his father, Dominique Fermat, was a wealthy merchant in wheat and cattle and was three times for one year one of the four consuls of BeaumontdeLomagne. His mother was either Françoise Cazeneuve or Claire de Long. Pierre had a brother and two sisters and was almost certainly brought up in the town of his birth. There is little evidence concerning his school education, but it was probably at the Collège de Navarre in Montauban.
He attended the University of Orléans from 1623 and received a bachelor in civil law in 1626, before moving to Bordeaux. In Bordeaux he began his first serious mathematical researches and in 1629 he gave a copy of his restoration of Apollonius's De Locis Planis to one of the mathematicians there. Certainly in Bordeaux he was in contact with Beaugrand and during this time he produced important work on maxima and minima which he gave to Étienne d'Espagnet who clearly shared mathematical interests with Fermat. There he became much influenced by the work of François Viète.
In 1630 he bought the office of a councillor at the Parlement de Toulouse, one of the High Courts of Judicature in France, and was sworn in by the Grand Chambre in May 1631. He held this office for the rest of his life. Fermat thereby became entitled to change his name from Pierre Fermat to Pierre de Fermat. Fluent in Latin, Occitan, classical Greek, Italian, and Spanish, Fermat was praised for his written verse in several languages, and his advice was eagerly sought regarding the emendation of Greek texts.
He communicated most of his work in letters to friends, often with little or no proof of his theorems. This allowed him to preserve his status as an "amateur" while gaining the recognition he desired. This naturally led to priority disputes with contemporaries such as Descartes and Wallis.^{3}
Anders Hald writes that, "The basis of Fermat's mathematics was the classical Greek treatises combined with Vieta's new algebraic methods."^{4}
Work
Fermat's pioneering work in analytic geometry was circulated in manuscript form in 1636, predating the publication of Descartes' famous La géométrie. This manuscript was published posthumously in 1679 in "Varia opera mathematica", as Ad Locos Planos et Solidos Isagoge, ("Introduction to Plane and Solid Loci").^{5}
In Methodus ad disquirendam maximam et minima and in De tangentibus linearum curvarum, Fermat developed a method (adequality) for determining maxima, minima, and tangents to various curves that was equivalent to differential calculus.^{6}^{7} In these works, Fermat obtained a technique for finding the centers of gravity of various plane and solid figures, which led to his further work in quadrature.
Fermat was the first person known to have evaluated the integral of general power functions. Using an ingenious trick, he was able to reduce this evaluation to the sum of geometric series.^{8} The resulting formula was helpful to Newton, and then Leibniz, when they independently developed the fundamental theorem of calculus.^{citation needed}
In number theory, Fermat studied Pell's equation, perfect numbers, amicable numbers and what would later become Fermat numbers. It was while researching perfect numbers that he discovered the little theorem. He invented a factorization method—Fermat's factorization method—as well as the proof technique of infinite descent, which he used to prove Fermat's Last Theorem for the case n = 4. Fermat developed the twosquare theorem, and the polygonal number theorem, which states that each number is a sum of three triangular numbers, four square numbers, five pentagonal numbers, and so on.
Although Fermat claimed to have proved all his arithmetic theorems, few records of his proofs have survived. Many mathematicians, including Gauss, doubted several of his claims, especially given the difficulty of some of the problems and the limited mathematical methods available to Fermat. His famous Last Theorem was first discovered by his son in the margin on his father's copy of an edition of Diophantus, and included the statement that the margin was too small to include the proof. He had not bothered to inform even Marin Mersenne of it. It was not proved until 1994 by Sir Andrew Wiles, using techniques unavailable to Fermat.
Although he carefully studied, and drew inspiration from Diophantus, Fermat began a different tradition. Diophantus was content to find a single solution to his equations, even if it were an undesired fractional one. Fermat was interested only in integer solutions to his Diophantine equations, and he looked for all possible general solutions. He often proved that certain equations had no solution, which usually baffled his contemporaries.
Through his correspondence with Pascal in 1654, Fermat and Pascal helped lay the fundamental groundwork for the theory of probability. From this brief but productive collaboration on the problem of points, they are now regarded as joint founders of probability theory.^{9} Fermat is credited with carrying out the first ever rigorous probability calculation. In it, he was asked by a professional gambler why if he bet on rolling at least one six in four throws of a die he won in the long term, whereas betting on throwing at least one doublesix in 24 throws of two dice resulted in his losing. Fermat subsequently proved why this was the case mathematically.^{10}
Fermat's principle of least time (which he used to derive Snell's law in 1657) was the first variational principle^{11} enunciated in physics since Hero of Alexandria described a principle of least distance in the first century CE. In this way, Fermat is recognized as a key figure in the historical development of the fundamental principle of least action in physics. The terms Fermat's principle and Fermat functional were named in recognition of this role.^{12}
Death
Pierre de Fermat died at Castres, Tarn.^{13} The oldest and most prestigious high school in Toulouse is named after him: the lycée PierredeFermat (fr). French sculptor Théophile Barrau made a marble statue named Hommage à Pierre Fermat as tribute to Fermat, now at the Capitole of Toulouse.
Assessment of his work
Together with René Descartes, Fermat was one of the two leading mathematicians of the first half of the 17th century. According to Peter L. Bernstein, in his book Against the Gods, Fermat "was a mathematician of rare power. He was an independent inventor of analytic geometry, he contributed to the early development of calculus, he did research on the weight of the earth, and he worked on light refraction and optics. In the course of what turned out to be an extended correspondence with Pascal, he made a significant contribution to the theory of probability. But Fermat's crowning achievement was in the theory of numbers."^{14}
Regarding Fermat's work in analysis, Isaac Newton wrote that his own early ideas about calculus came directly from "Fermat's way of drawing tangents."^{15}
Of Fermat's number theoretic work, the 20thcentury mathematician André Weil wrote that "... what we possess of his methods for dealing with curves of genus 1 is remarkably coherent; it is still the foundation for the modern theory of such curves. It naturally falls into two parts; the first one ... may conveniently be termed a method of ascent, in contrast with the descent which is rightly regarded as Fermat's own."^{16} Regarding Fermat's use of ascent, Weil continued "The novelty consisted in the vastly extended use which Fermat made of it, giving him at least a partial equivalent of what we would obtain by the systematic use of the group theoretical properties of the rational points on a standard cubic."^{17} With his gift for number relations and his ability to find proofs for many of his theorems, Fermat essentially created the modern theory of numbers.
See also
 Diagonal form
 Euler's theorem
 List of things named after Pierre de Fermat
 Listing of the works of Alexandre Falguière
Notes
 ^ ^{a} ^{b} "Pierre de Fermat". The Mactutor History of Mathematics. Retrieved 29 May 2013.
 ^ Křížek, M.; Luca, Florian; Somer, Lawrence (2001). 17 lectures on Fermat numbers: from number theory to geometry. CMS books in mathematics. Springer. p. v. ISBN 9780387953328.
 ^ Ball, Walter William Rouse (1888). A short account of the history of mathematics. General Books LLC. ISBN 9781443294874.
 ^ http://www.ams.org/notices/199507/faltings.pdf
 ^ Gullberg, Jan. Mathematics from the birth of numbers, W. W. Norton & Company; p. 548. ISBN 039304002X ISBN 9780393040029
 ^ Pellegrino, Dana. "Pierre de Fermat". Retrieved 20080224.
 ^ Florian Cajori, "Who was the First Inventor of Calculus" The American Mathematical Monthly (1919) Vol.26
 ^ Paradís, Jaume; Pla, Josep; Viader, Pelagrí. "Fermat's Treatise On Quadrature: A New Reading". Retrieved 20080224.
 ^ O'Connor, J. J.; Robertson, E. F. "The MacTutor History of Mathematics archive: Pierre de Fermat". Retrieved 20080224.
 ^ Eves, Howard. An Introduction to the History of Mathematics, Saunders College Publishing, Fort Worth, Texas, 1990.
 ^ "Fermat's principle for light rays". Retrieved 20080224.
 ^ Červený, V. (July 2002). "Fermat's Variational Principle for Anisotropic Inhomogeneous Media". Studia Geophysica et Geodaetica 46 (3): 567. doi:10.1023/A:1019599204028.
 ^ Klaus Barner (2001): How old did Fermat become? Internationale Zeitschrift für Geschichte und Ethik der Naturwissenschaften, Technik und Medizin. ISSN 00366978. Vol 9, No 4, pp. 209228.
 ^ Bernstein, Peter L. (1996). Against the Gods: The Remarkable Story of Risk. John Wiley & Sons. pp. 61–62. ISBN 9780471121046.
 ^ Simmons, George F. (2007). Calculus Gems: Brief Lives and Memorable Mathematics. Mathematical Association of America. p. 98. ISBN 0883855615.
 ^ Weil 1984, p.104
 ^ Weil 1984, p.105
Books referenced
 Weil, André (1984). Number Theory: An approach through history From Hammurapi to Legendre. Birkhäuser. ISBN 0817631410.
Further reading
 Barner, Klaus. "Pierre de Fermat (1601?  1665): His life besides mathematics.". Newsletter of the European Mathematical Society, December 2001, pp. 1216.
 Mahoney, Michael Sean (1994). The mathematical career of Pierre de Fermat, 1601  1665. Princeton Univ. Press. ISBN 0691036667.
 Singh, Simon (2002). Fermat's Last Theorem. Fourth Estate Ltd. ISBN 1841157910.
External links
Wikimedia Commons has media related to Pierre de Fermat. 
Wikiquote has a collection of quotations related to: Pierre de Fermat 
 Fermat's Achievements
 Fermat's Fallibility at MathPages
 History of Fermat's Last Theorem (French)
 The Life and times of Pierre de Fermat (1601  1665) from W. W. Rouse Ball's History of Mathematics
 O'Connor, John J.; Robertson, Edmund F., "Pierre de Fermat", MacTutor History of Mathematics archive, University of St Andrews.


HPTS  Area Progetti  EduSoft  JavaEdu  N.Saperi  Ass.Scuola..  TS BCTV  TS VideoRes  TSODP  TRTWE  