Selfadjoint operator
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: remove Hermitian operators; "H is Hermitian (the name for selfadjoint in the physics literature)" and "Bounded symmetric operators are also called Hermitian." is contradicting.. (November 2013) 
In mathematics, a selfadjoint operator on a complex vector space V with inner product is an operator (a linear map A from V to itself) that is its own adjoint: . If V is finitedimensional with a given basis, this is equivalent to the condition that the matrix of A is Hermitian, i.e., equal to its conjugate transpose A*. By the finitedimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
Selfadjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum and spin are represented by selfadjoint operators on a Hilbert space. Of particular significance is the Hamiltonian
which as an observable corresponds to the total energy of a particle of mass m in a real potential field V. Differential operators are an important class of unbounded operators.
The structure of selfadjoint operators on infinitedimensional Hilbert spaces essentially resembles the finitedimensional case, that is to say, operators are selfadjoint if and only if they are unitarily equivalent to realvalued multiplication operators. With suitable modifications, this result can be extended to possibly unbounded operators on infinitedimensional spaces. Since an everywhere defined selfadjoint operator is necessarily bounded, one needs be more attentive to the domain issue in the unbounded case. This is explained below in more detail.
Contents
Symmetric operators
A linear operator A on a Hilbert space H is called symmetric if
for all elements x and y in the domain of A. Sometimes, such an operator is only called symmetric if it is also densely defined.
More generally, a partially defined linear operator A from a topological vector space E into its continuous dual space E^{∗} is said to be symmetric if
for all elements x and y in the domain of A. This usage is fairly standard in the functional analysis literature.
A symmetric everywhere defined operator is selfadjoint. By the HellingerToeplitz theorem, a symmetric everywhere defined operator is also bounded.
In the physics literature, the term Hermitian is used in place of the term symmetric. It should be noted, however, that the physics literature generally glosses over the distinction between operators that are merely symmetric and operators that are actually selfadjoint (as defined in the next section).
The previous definition agrees with the one for matrices given in the introduction to this article, if we take as H the Hilbert space C^{n} with the standard dot product and interpret a square matrix as a linear operator on this Hilbert space. It is however much more general as there are important infinitedimensional Hilbert spaces.
The spectrum of any bounded symmetric operator is real; in particular all its eigenvalues are real, although a symmetric operator may have no eigenvalues.
A general version of the spectral theorem which also applies to bounded symmetric operators (see Reed and Simon, vol. 1, chapter VII, or other books cited) is stated below. If the set of eigenvalues for a symmetric operator is non empty, and the eigenvalues are nondegenerate, then it follows from the definition that eigenvectors corresponding to distinct eigenvalues are orthogonal. Contrary to what is sometimes claimed in introductory physics textbooks, it is possible for symmetric operators to have no eigenvalues at all (although the spectrum of any selfadjoint operator is nonempty). The example below illustrates a special case when an (unbounded) symmetric operator does have a set of eigenvectors which constitute a Hilbert space basis. The operator A below can be seen to have a compact inverse, meaning that the corresponding differential equation Af = g is solved by some integral, therefore compact, operator G. The compact symmetric operator G then has a countable family of eigenvectors which are complete in L^{2}. The same can then be said for A.
Example. Consider the complex Hilbert space L^{2}[0,1] and the differential operator
defined on the subspace consisting of all complexvalued infinitely differentiable functions f on [0, 1] with the boundary conditions f(0) = f(1) = 0. Then integration by parts shows that A is symmetric. Its eigenfunctions are the sinusoids
with the real eigenvalues n^{2}π^{2}; the wellknown orthogonality of the sine functions follows as a consequence of the property of being symmetric.
We consider generalizations of this operator below.
Selfadjoint operators
Given a densely defined linear operator A on H, its adjoint A* is defined as follows:
 The domain of A* consists of vectors x in H such that
 (which is a densely defined linear map) is a continuous linear functional. By continuity and density of the domain of A, it extends to a unique continuous linear functional on all of H.
 By the Riesz representation theorem for linear functionals, if x is in the domain of A*, there is a unique vector z in H such that

 This vector z is defined to be A* x. It can be shown that the dependence of z on x is linear.
Notice that it is the denseness of the domain of the operator, along with the uniqueness part of Riesz representation, that ensures the adjoint operator is well defined.
A result of HellingerToeplitz type says that an operator having an everywhere defined bounded adjoint is bounded.
The condition for a linear operator on a Hilbert space to be selfadjoint is stronger than to be symmetric. Although this distinction is technical, it is very important; the spectral theorem applies only to operators that are selfadjoint and not to operators that are merely symmetric. For an extensive discussion of the distinction, see Chapter 9 of Hall (2013).
For any densely defined operator A on Hilbert space one can define its adjoint operator A*. For a symmetric operator A, the domain of the operator A* contains the domain of the operator A, and the restriction of the operator A* on the domain of A coincides with the operator A, i.e. A ⊆ A*, in other words A* is extension of A. For a selfadjoint operator A the domain of A* is the same as the domain of A, and A=A*. See also Extensions of symmetric operators and unbounded operator.
Geometric interpretation
There is a useful geometric way of looking at the adjoint of an operator A on H as follows: we consider the graph G(A) of A defined by
 Theorem. Let J be the symplectic mapping
 Then the graph of A* is the orthogonal complement of JG(A):
A densely defined operator A is symmetric if and only if A ⊆ A*, where the subset notation A ⊆ A* is understood to mean G(A) ⊆ G(A*). An operator A is selfadjoint if and only if A = A*; that is, if and only if G(A) = G(A*).
Example. Consider the complex Hilbert space L^{2}(R), and the operator which multiplies a given function by x:
The domain of A is the space of all L^{2} functions for which the righthandside is squareintegrable. A is a symmetric operator without any eigenvalues and eigenfunctions. In fact it turns out that the operator is selfadjoint, as follows from the theory outlined below.
As we will see later, selfadjoint operators have very important spectral properties; they are in fact multiplication operators on general measure spaces.
Spectral theorem
Partially defined operators A, B on Hilbert spaces H, K are unitarily equivalent if and only if there is a unitary transformation U : H → K such that
 U maps dom A bijectively onto dom B,
A multiplication operator is defined as follows: Let (X, Σ, μ) be a countably additive measure space and f a realvalued measurable function on X. An operator T of the form
whose domain is the space of ψ for which the righthand side above is in L^{2} is called a multiplication operator.
 Theorem. Any multiplication operator is a (densely defined) selfadjoint operator. Any selfadjoint operator is unitarily equivalent to a multiplication operator.
This version of the spectral theorem for selfadjoint operators can be proved by reduction to the spectral theorem for unitary operators. This reduction uses the Cayley transform for selfadjoint operators which is defined in the next section. We might note that if T is multiplication by f, then the spectrum of T is just the essential range of f.
Borel functional calculus
Given the representation of T as a multiplication operator, it is easy to characterize the Borel functional calculus: If h is a bounded realvalued Borel function on R, then h(T) is the operator of multiplication by the composition h ∘ f. In order for this to be welldefined, we must show that it is the unique operation on bounded realvalued Borel functions satisfying a number of conditions.
Resolution of the identity
It has been customary to introduce the following notation
where is the characteristic function of the interval . The family of projection operators E_{T}(λ) is called resolution of the identity for T. Moreover, the following Stieltjes integral representation for T can be proved:
The definition of the operator integral above can be reduced to that that of a scalar valued Stieltjes integral using the weak operator topology. In more modern treatments however, this representation is usually avoided, since most technical problems can be dealt with by the functional calculus.
Formulation in the physics literature
In physics, particularly in quantum mechanics, the spectral theorem is expressed in a way which combines the spectral theorem as stated above and the Borel functional calculus using Dirac notation as follows:
If H is selfadjoint and f is a Borel function,
with
where the integral runs over the whole spectrum of H. The notation suggests that H is diagonalized by the eigenvectors Ψ_{E}. Such a notation is purely formal. One can see the similarity between Dirac's notation and the previous section. The resolution of the identity (sometimes called projection valued measures) formally resembles the rank1 projections . In the Dirac notation, (projective) measurements are described via eigenvalues and eigenstates, both purely formal objects. As one would expect, this does not survive passage to the resolution of the identity. In the latter formulation, measurements are described using the spectral measure of , if the system is prepared in prior to the measurement. Alternatively, if one would like to preserve the notion of eigenstates and make it rigorous, rather than merely formal, one can replace the state space by a suitable rigged Hilbert space.
If f = 1, the theorem is referred to as resolution of unity:
In the case is the sum of an Hermitian H and a skewHermitian (see skewHermitian matrix) operator , one defines the biorthogonal basis set
and write the spectral theorem as:
(See Feshbach–Fano partitioning method for the context where such operators appear in scattering theory).
Extensions of symmetric operators
The following question arises in several contexts: if an operator A on the Hilbert space H is symmetric, when does it have selfadjoint extensions? One answer is provided by the Cayley transform of a selfadjoint operator and the deficiency indices. (We should note here that it is often of technical convenience to deal with closed operators. In the symmetric case, the closedness requirement poses no obstacles, since it is known that all symmetric operators are closable.)
 Theorem. Suppose A is a symmetric operator. Then there is a unique partially defined linear operator
 such that
Here, ran and dom denote the range and the domain, respectively. W(A) is isometric on its domain. Moreover, the range of 1 − W(A) is dense in H.
Conversely, given any partially defined operator U which is isometric on its domain (which is not necessarily closed) and such that 1 − U is dense, there is a (unique) operator S(U)
such that
The operator S(U) is densely defined and symmetric.
The mappings W and S are inverses of each other.
The mapping W is called the Cayley transform. It associates a partially defined isometry to any symmetric densely defined operator. Note that the mappings W and S are monotone: This means that if B is a symmetric operator that extends the densely defined symmetric operator A, then W(B) extends W(A), and similarly for S.
 Theorem. A necessary and sufficient condition for A to be selfadjoint is that its Cayley transform W(A) be unitary.
This immediately gives us a necessary and sufficient condition for A to have a selfadjoint extension, as follows:
 Theorem. A necessary and sufficient condition for A to have a selfadjoint extension is that W(A) have a unitary extension.
A partially defined isometric operator V on a Hilbert space H has a unique isometric extension to the norm closure of dom(V). A partially defined isometric operator with closed domain is called a partial isometry.
Given a partial isometry V, the deficiency indices of V are defined as the dimension of the orthogonal complements of the domain and range:
 Theorem. A partial isometry V has a unitary extension if and only if the deficiency indices are identical. Moreover, V has a unique unitary extension if and only if the both deficiency indices are zero.
We see that there is a bijection between symmetric extensions of an operator and isometric extensions of its Cayley transform. An operator which has a unique selfadjoint extension is said to be essentially selfadjoint. Such operators have a welldefined Borel functional calculus. Symmetric operators which are not essentially selfadjoint may still have a canonical selfadjoint extension. Such is the case for nonnegative symmetric operators (or more generally, operators which are bounded below). These operators always have a canonically defined Friedrichs extension and for these operators we can define a canonical functional calculus. Many operators that occur in analysis are bounded below (such as the negative of the Laplacian operator), so the issue of essential adjointness for these operators is less critical.
Selfadjoint extensions in quantum mechanics
In quantum mechanics, observables correspond to selfadjoint operators. By Stone's theorem on oneparameter unitary groups, selfadjoint operators are precisely the infinitesimal generators of unitary groups of time evolution operators. However, many physical problems are formulated as a timeevolution equation involving differential operators for which the Hamiltonian is only symmetric. In such cases, either the Hamiltonian is essentially selfadjoint, in which case the physical problem has unique solutions or one attempts to find selfadjoint extensions of the Hamiltonian corresponding to different types of boundary conditions or conditions at infinity.
Example. The onedimensional Schrödinger operator with the potential , defined initially on smooth compactly supported functions, is essentially selfadjoint (that is, has a selfadjoint closure) for 0 < α ≤ 2 but not for α > 2. See Berezin and Schubin, pages 55 and 86, or Section 9.10 in Hall.
Example. There is no selfadjoint momentum operator p for a particle moving on a halfline. Nevertheless, the Hamiltonian of a "free" particle on a halfline has several selfadjoint extensions corresponding to different types of boundary conditions. Physically, these boundary conditions are related to reflections of the particle at the origin (see Reed and Simon, vol.2).
Von Neumann's formulas
Suppose A is symmetric densely defined. Then any symmetric extension of A is a restriction of A*. Indeed, if B is symmetric, then A ⊆ B implies B* ⊆ A*.
 Theorem. Suppose A is a densely defined symmetric operator. Let
 Then
 and
 where the decomposition is orthogonal relative to the graph inner product of dom(A*):
 .
These are referred to as von Neumann's formulas in the Akhiezer and Glazman reference.
Examples
We first consider the differential operator
defined on the space of complexvalued C^{∞} functions on [0,1] vanishing near 0 and 1. D is a symmetric operator as can be shown by integration by parts. The spaces N_{+}, N_{−} are given respectively by the distributional solutions to the equation
which are in L^{2}[0, 1]. One can show that each one of these solution spaces is 1dimensional, generated by the functions x → e^{ix} and x → e^{−ix} respectively. This shows that D is not essentially selfadjoint, but does have selfadjoint extensions. These selfadjoint extensions are parametrized by the space of unitary mappings N_{+} → N_{−}, which in this case happens to be the unit circle T.
This simple example illustrates a general fact about selfadjoint extensions of symmetric differential operators P on an open set M. They are determined by the unitary maps between the eigenvalue spaces
where P_{dist} is the distributional extension of P.
We next give the example of differential operators with constant coefficients. Let
be a polynomial on R^{n} with real coefficients, where α ranges over a (finite) set of multiindices. Thus
and
We also use the notation
Then the operator P(D) defined on the space of infinitely differentiable functions of compact support on R^{n} by
is essentially selfadjoint on L^{2}(R^{n}).
 Theorem. Let P a polynomial function on R^{n} with real coefficients, F the Fourier transform considered as a unitary map L^{2}(R^{n}) → L^{2}(R^{n}). Then F*P(D)F is essentially selfadjoint and its unique selfadjoint extension is the operator of multiplication by the function P.
More generally, consider linear differential operators acting on infinitely differentiable complexvalued functions of compact support. If M is an open subset of R^{n}
where a_{α} are (not necessarily constant) infinitely differentiable functions. P is a linear operator
Corresponding to P there is another differential operator, the formal adjoint of P
 Theorem. The operator theoretic adjoint P* of P is a restriction of the distributional extension of the formal adjoint. Specifically:
Spectral multiplicity theory
The multiplication representation of a selfadjoint operator, though extremely useful, is not a canonical representation. This suggests that it is not easy to extract from this representation a criterion to determine when selfadjoint operators A and B are unitarily equivalent. The finest grained representation which we now discuss involves spectral multiplicity. This circle of results is called the HahnHellinger theory of spectral multiplicity.
We first define uniform multiplicity:
Definition. A selfadjoint operator A has uniform multiplicity n where n is such that 1 ≤ n ≤ ω if and only if A is unitarily equivalent to the operator M_{f} of multiplication by the function f(λ) = λ on
where H_{n} is a Hilbert space of dimension n. The domain of M_{f} consists of vectorvalued functions ψ on R such that
Nonnegative countably additive measures μ, ν are mutually singular if and only if they are supported on disjoint Borel sets.
 Theorem. Let A be a selfadjoint operator on a separable Hilbert space H. Then there is an ω sequence of countably additive finite measures on R (some of which may be identically 0)
 such that the measures are pairwise singular and A is unitarily equivalent to the operator of multiplication by the function f(λ) = λ on
This representation is unique in the following sense: For any two such representations of the same A, the corresponding measures are equivalent in the sense that they have the same sets of measure 0.
The spectral multiplicity theorem can be reformulated using the language of direct integrals of Hilbert spaces:
 Theorem. Any selfadjoint operator on a separable Hilbert space is unitarily equivalent to multiplication by the function λ → λ on
The measure equivalence class of μ (or equivalently its sets of measure 0) is uniquely determined and the measurable family {H_{x}}_{x} is determined almost everywhere with respect to μ.
Example: structure of the Laplacian
The Laplacian on R^{n} is the operator
As remarked above, the Laplacian is diagonalized by the Fourier transform. Actually it is more natural to consider the negative of the Laplacian −Δ since as an operator it is nonnegative; (see elliptic operator).
Theorem. If n=1, then −Δ has uniform multiplicity mult=2, otherwise −Δ has uniform multiplicity mult=ω. Moreover, the measure μ_{mult} is Borel measure on [0, ∞).
Pure point spectrum
A selfadjoint operator A on H has pure point spectrum if and only if H has an orthonormal basis {e_{i}}_{i ∈ I} consisting of eigenvectors for A.
Example. The Hamiltonian for the harmonic oscillator has a quadratic potential V, that is
This Hamiltonian has pure point spectrum; this is typical for bound state Hamiltonians in quantum mechanics. As was pointed out in a previous example, a sufficient condition that an unbounded symmetric operator has eigenvectors which form a Hilbert space basis is that it has a compact inverse.
See also
 Compact operator on Hilbert space
 Theoretical and experimental justification for the Schrödinger equation
 Unbounded operator
References
 Akhiezer, N. I.; Glazman, I. M. (1981). Theory of Linear Operators in Hilbert Space. Two volumes. Pitman.
 Berezin, F. A.; Shubin, M. A. (1991). The Schrödinger Equation. Kluwer.
 Kato, T. (1966). Perturbation Theory for Linear Operators. New York: Springer.
 Hall, B. C. (2013). Quantum Theory for Mathematicians. New York: Springer.
 Reed, M.; Simon, B. (1972). Methods of Mathematical Physics. Vol 2. Academic Press.
 Teschl, G. (2009). Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators. Providence: American Mathematical Society.
 Yosida, K. (1965). Functional Analysis. Academic Press.

HPTS  Area Progetti  EduSoft  JavaEdu  N.Saperi  Ass.Scuola..  TS BCTV  TS VideoRes  TSODP  TRTWE  