Timeline of particle discoveries

From Wikipedia, the free encyclopedia
Jump to: navigation, search

This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary (that is, indivisible) given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.

More specifically, the inclusion criteria are:

  • Elementary particles from the Standard Model of particle physics that have so far been observed. The Standard Model is the most comprehensive existing model of particle behavior. All Standard Model particles including the Higgs boson have been verified, and all other observed particles are combinations of two or more Standard Model particles.
  • Antiparticles which were historically important to the development of particle physics, specifically the positron and antiproton. The discovery of these particles required very different experimental methods from that of their ordinary matter counterparts, and provided evidence that all particles had antiparticles—an idea that is fundamental to quantum field theory, the modern mathematical framework for particle physics. In the case of most subsequent particle discoveries, the particle and its anti-particle were discovered essentially simultaneously.
  • Composite particles which were the first particle discovered containing a particular elementary constituent, or whose discovery was critical to the understanding of particle physics.

Note that there have been many other composite particles discovered; see list of mesons and list of baryons. See List of particles for a more general list of particles, including hypothetical particles.

  • 1800: William Herschel discovers "heat rays"
  • 1801: Johann Wilhelm Ritter made the hallmark observation that invisible rays just beyond the violet end of the visible spectrum were especially effective at lightening silver chloride-soaked paper. He called them "oxidizing rays" to emphasize chemical reactivity and to distinguish them from "heat rays" at the other end of the invisible spectrum (both of which were later determined to be photons). The more general term "chemical rays" was adopted shortly thereafter to describe the oxidizing rays, and it remained popular throughout the 19th century. The terms chemical and heat rays were eventually dropped in favor of ultraviolet and infrared radiation, respectively.1
  • 1895: Discovery of the ultraviolet radiation below 200 nm, named vacuum ultraviolet (later identified as photons) because it is strongly absorbed by air, by the German physicist Victor Schumann2


  1. ^ Hockberger, P. E. (2002). "A history of ultraviolet photobiology for humans, animals and microorganisms". Photochem. Photobiol. 76 (6): 561–579. doi:10.1562/0031-8655(2002)076<0561:AHOUPF>2.0.CO;2. ISSN 0031-8655. PMID 12511035. 
  2. ^ The ozone layer protects humans from this. Lyman, T. (1914). "Victor Schumann". Astrophysical Journal 38: 1–4. Bibcode:1914ApJ....39....1L. doi:10.1086/142050. 
  3. ^ W.C. Röntgen (1895). "Über ein neue Art von Strahlen. Vorlaufige Mitteilung". Sitzber. Physik. Med. Ges. 137: 1.  as translated in A. Stanton (1896). "On a New Kind of Rays". Nature 53 (1369): 274. Bibcode:1896Natur..53R.274.. doi:10.1038/053274b0. 
  4. ^ J.J. Thomson (1897). "Cathode Rays". Philosophical Magazine 44: 293. doi:10.1080/14786449708621070. 
  5. ^ E. Rutherford (1899). "Uranium Radiation and the Electrical Conduction Produced by it". Philosophical Magazine 47: 109. 
  6. ^ P. Villard (1900). "Sur la Réflexion et la Réfraction des Rayons Cathodiques et des Rayons Déviables du Radium". Comptes Rendus de l'Académie des Sciences 130: 1010. 
  7. ^ E. Rutherford (1911). "The Scattering of α- and β- Particles by Matter and the Structure of the Atom". Philosophical Magazine 21: 669. doi:10.1080/14786440508637080. 
  8. ^ E. Rutherford (1919). "Collision of α Particles with Light Atoms IV. An Anomalous Effect in Nitrogen". Philosophical Magazine 37: 581. 
  9. ^ J. Chadwick (1932). "Possible Existence of a Neutron". Nature 129 (3252): 312. Bibcode:1932Natur.129Q.312C. doi:10.1038/129312a0. 
  10. ^ E. Rutherford (1920). "Nuclear Constitution of Atoms". Proceedings of the Royal Society A 97: 374. Bibcode:1920RSPSA..97..374R. doi:10.1098/rspa.1920.0040. 
  11. ^ C.D. Anderson (1932). "The Apparent Existence of Easily Deflectable Positives". Science 76 (1967): 238–9. Bibcode:1932Sci....76..238A. doi:10.1126/science.76.1967.238. PMID 17731542. 
  12. ^ S.H. Neddermeyer, C.D. Anderson (1937). "Note on the nature of Cosmic-Ray Particles". Physical Review 51 (10): 884. Bibcode:1937PhRv...51..884N. doi:10.1103/PhysRev.51.884. 
  13. ^ M. Conversi, E. Pancini, O. Piccioni (1947). "On the Disintegration of Negative Muons". Physical Review 71 (3): 209. Bibcode:1947PhRv...71..209C. doi:10.1103/PhysRev.71.209. 
  14. ^ C.D. Anderson (1935). "On the Interaction of Elementary Particles". Proceedings of the Physico-Mathematical Society of Japan 17: 48. 
  15. ^ G.D. Rochester, C.C. Butler (1947). "Evidence for the Existence of New Unstable Elementary Particles". Nature 160 (4077): 855. Bibcode:1947Natur.160..855R. doi:10.1038/160855a0. 
  16. ^ The Strange Quark
  17. ^ O. Chamberlain, E. Segrè, C. Wiegand, T. Ypsilantis (1955). "Observation of Antiprotons". Physical Review 100 (3): 947. Bibcode:1955PhRv..100..947C. doi:10.1103/PhysRev.100.947. 
  18. ^ F. Reines, C.L. Cowan (1956). "The Neutrino". Nature 178 (4531): 446. Bibcode:1956Natur.178..446R. doi:10.1038/178446a0. 
  19. ^ G. Danby 'et al. (1962). "Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos". Physical Review Letters 9 (1): 36. Bibcode:1962PhRvL...9...36D. doi:10.1103/PhysRevLett.9.36. 
  20. ^ R. Nave. "The Xi Baryon". Hyperphysics. Retrieved 20 June 2009. 
  21. ^ E.D. Bloom et al. (1969). "High-Energy Inelastic ep Scattering at 6° and 10°". Physical Review Letters 23 (16): 930. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930. 
  22. ^ M. Breidenbach et al. (1969). "Observed Behavior of Highly Inelastic Electron-Proton Scattering". Physical Review Letters 23 (16): 935. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. 
  23. ^ J.J. Aubert et al. (1974). "Experimental Observation of a Heavy Particle J". Physical Review Letters 33 (23): 1404. Bibcode:1974PhRvL..33.1404A. doi:10.1103/PhysRevLett.33.1404. 
  24. ^ J.-E. Augustin et al. (1974). "Discovery of a Narrow Resonance in e+e Annihilation". Physical Review Letters 33 (23): 1406. Bibcode:1974PhRvL..33.1406A. doi:10.1103/PhysRevLett.33.1406. 
  25. ^ B.J. Bjørken, S.L. Glashow (1964). "Elementary Particles and SU(4)". Physics Letters 11 (3): 255. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0. 
  26. ^ M.L. Perl et al. (1975). "Evidence for Anomalous Lepton Production in e+e Annihilation". Physical Review Letters 35 (22): 1489. Bibcode:1975PhRvL..35.1489P. doi:10.1103/PhysRevLett.35.1489. 
  27. ^ S.W. Herb et al. (1977). "Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions". Physical Review Letters 39 (5): 252. Bibcode:1977PhRvL..39..252H. doi:10.1103/PhysRevLett.39.252. 
  28. ^ D.P. Barber et al. (1979). "Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA". Physical Review Letters 43 (12): 830. Bibcode:1979PhRvL..43..830B. doi:10.1103/PhysRevLett.43.830. 
  29. ^ J.J. Aubert et al. (European Muon Collaboration) (1983). "The ratio of the nucleon structure functions F2N for iron and deuterium". Physics Letters B 123 (3–4): 275. Bibcode:1983PhLB..123..275A. doi:10.1016/0370-2693(83)90437-9. 
  30. ^ G. Arnison et al. (UA1 collaboration) (1983). "Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider". Physics Letters B 126 (5): 398. Bibcode:1983PhLB..126..398A. doi:10.1016/0370-2693(83)90188-0. 
  31. ^ F. Abe et al. (CDF collaboration) (1995). "Observation of Top quark production in p–p Collisions with the Collider Detector at Fermilab". Physical Review Letters 74 (14): 2626–2631. arXiv:hep-ex/9503002. Bibcode:1995PhRvL..74.2626A. doi:10.1103/PhysRevLett.74.2626. PMID 10057978. 
  32. ^ S. Arabuchi et al. (D0 collaboration) (1995). "Observation of the Top Quark". Physical Review Letters 74 (14): 2632–2637. arXiv:hep-ex/9503003. Bibcode:1995PhRvL..74.2632A. doi:10.1103/PhysRevLett.74.2632. PMID 10057979. 
  33. ^ G. Baur et al. (1996). "Production of Antihydrogen". Physics Letters B 368 (3): 251–258. Bibcode:1996PhLB..368..251B. doi:10.1016/0370-2693(96)00005-6. 
  34. ^ "Physicists Find First Direct Evidence for Tau Neutrino at Fermilab" (Press release). Fermilab. 20 July 2000. Retrieved 20 March 2010. 
  35. ^ Boyle, Alan (July 4, 2012). "Milestone in Higgs quest: Scientists find new particle". MSNBC (MSNBC). Retrieved July 5, 2012. 

Creative Commons License