Nivel energético

De Wikipedia, la enciclopedia libre
(Redirigido desde «Nivel de energía»)
Saltar a: navegación, búsqueda

En mecánica cuántica, un nivel energético es un estado (o conjunto de estados) cuya energía es uno de los valores posibles del operador hamiltoniano, y por lo tanto su valor de energía es un valor propio de dicho operador. Matemáticamente los estados de un cierto nivel energético son funciones propias del mismo hamiltoniano.

Niveles energéticos atómicoseditar

En química y teoría atómica se parte del hecho de que los electrones que forman parte del átomo están distribuidos en "capas" o niveles energéticos. En función de la capa que ocupe un electrón tiene una u otra energía de ahí que se diga que ocupa una capa de cierto nivel energético. La existencia de capas se debe a dos hechos: el principio de exclusión de Pauli que limita el número de electrones por capa, y el hecho de que sólo ciertos valores de la energía están permitidos (técnicamente estos valores coinciden con los autovalores del operador hamiltoniano cuántico que describe la dinámica de los electrones que interaccionan electromagnéticamente con el núcleo atómico).

Si bien un electrón no puede adoptar cualquier tipo de energía sino sólo unas determinadas asociadas a los niveles energéticos de cada átomo, si es posible si se aporta energía a los electrones que estos "salten" a otros niveles de energía superiores, pasando el átomo a estar en un estado excitado. La electrodinámica cuántica implica que estos estados excitados del átomo, donde un electrón ocupa un nivel energético alto existiendo huecos en los niveles inferiores son inestables, por lo que al cabo de unos instantes el electrón "decae" a niveles más bajos y emite la energía sobrante en forma de fotones. Cuando un electrón pasa de un nivel energético de con energía E1 a uno con energía menor E2 la frecuencia del fotón emitido viene dada por:

\nu = \frac{E_1-E_2}{h}

donde h es la llamada constante de Planck.

Más técnicamente en mecánica cuántica las capas se modelizan como orbitales atómicos que son distribuciones de carga eléctrica en el espacio, cuya forma exacta depende de los detalles del modelo atómico de Schrödinger que está formado por soluciones exactas de la llamada ecuación de Schrödinger. En el modelo de Schrödinger y otros anteriores la estructura de capas electrónicas u orbitales es lo que explica la reactividad del átomo y los tipos de combinaciones (compuestos) que éste átomo puede formar. En ciertas situaciones físicas el modelo atómico de Schrödinger es inexacto y por ejemplo no puede esplicar la estructura final del espectro, en esos casos frecuentemente se requiere la consideración del espín electrónico y el uso de la ecuación relativista de Dirac. aunque la mayor parte de las aplicaciones a la química pueden ser descritas mediante el modelo de Schrödinger que es algo más simple.

Un orbital atómico viene representado por una función matemática que describe la distribución de probabilidad de uno o dos electrones en un átomo, dicha función es una función propia del hamiltoniano del átomo hidrogenoide. Un orbital molecular es análogo, pero para moléculas.

Niveles energéticos moleculareseditar

Las mismas ideas usadas para explicar el espectro de emisión y absorción de los átomos pueden ser aplicadas a moléculas. Muy informalmente puede decirse que una molécula es una configuración estable de átomos que comparten orbitales atómicos. Los niveles energéticos de una molécula también pueden describirse mediante un hamiltoniano cuántico, aunque aquí el cálculo de los niveles energéticos resulta mucho más complicado matemáticamente y con frecuencia se recurre a aproximaciones numéricas, para predecir los niveles energéticos. De especial importancia son los niveles energéticos del HOMO (orbital molecular más alto ocupado) y del LUMO (orbital molecular más bajo vacío).

Las diferentes espectroscopias estudian transiciones entre niveles de distintas energías. La espectroscopia infrarroja, por ejemplo, estudia transiciones entre niveles energéticos de vibración molecular, mientras que la espectroscopia ultravioleta-visible estudia transiciones electrónicas y la espectroscopia Mössbauer se ocupa de transiciones nucleares. Orbitales

Para una descripción y comprensión detalladas de las reacciones químicas y de las propiedades físicas de las diferentes sustancias, es muy útil su descripción a través de orbitales, con ayuda de la mecánica cuántica.

Referenciaseditar

Bibliografíaeditar

  • de la Peña, Luis (2006). Introducción a la mecánica cuántica (3 edición). México DF: Fondo de Cultura Económica. ISBN 968-16-7856-7. 
  • Galindo, A. y Pascual P.: Mecánica cuántica, Ed. Eudema, Barcelona, 1989, ISBN 84-7754-042-X.

Enlaces externoseditar








Creative Commons License